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The Einstein equations for a spherically symmetrical distribution of matter are studied. The matter is 
described by the stress-energy tensor of an ideal fluid (heat flow and radiation are therefore excluded). In this 
case, the Einstein equations give a generalization of the Oppenheimer-Volkoff equations of hydrostatic 
equilibrium so as to include an acceleration term and a contribution to the effective mass of a shell of matter 
arising from its kinetic energy. A second equation also appears in this time-dependent case; it gives the rate of 
change of an appropriate "total energy" m(r,t) of each fluid sphere in terms of the work done on this sphere 
by the fluid surrounding it. These equations would be an appropriate starting point for a study of relativistic 
gravitational collapse in which an adiabatic equation of state more realistic than the p = 0 form of Oppen-
heimer and Snyder could be used. 

I. INTRODUCTION AND SUMMARY 

TH E original discussion of an idealized problem of 
gravitational collapse due to Oppenheimer and 

Snyder1 assumes a spherically symmetric distribution 
of matter, adiabatic flow (no viscosity, heat conduction, 
or radiation), the equation of state p = 0, and simple 
initial conditions. In this note we maintain the assump
tions of spherical symmetry and adiabatic flow, and 
consider the introduction of pressure gradient forces 
into the equations. Our purpose is to cast the equations 
into as simple and physically transparent a form as we 
can, preliminary to their numerical solution. 

Much of the recent interest2 in gravitational collapse 
centers about the possibility (in a stage of collapse where 
the gravitational binding energy GM2/R becomes com
parable to the rest energy Mc2) of a large energy output 
of a star, a discussion of which falls outside the scope 
of the equations derived here. Nevertheless, a study of 
these equations may provide a useful first step in a 
more realistic analysis of the gravitational collapse of 
stars—which would presumably include the effects of 
rotation, departures from spherical symmetry, and 
radiation—as well as some insight into the issues of 
principle involved in gravitational collapse.3 

In the remaining paragraphs of this section we will 
summarize our results. These are derived in the succeed
ing sections. 

Associated with an ideal fluid is a stress energy given 
by the tensor 

T^={p+e)u^uv+pgf1\ (1.1) 

* Supported in part by NASA Grant No. NsG 436. 
t NSF Postdoctoral Fellow, 1963-64. 
1 J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939). 
2W. A. Fowler, Rev. Mod. Phys. 36, 549 (1964); F. Hoyle, 

W. A. Fowler, G. R. Burbidge and E. M. Burbidge, Astrophys. 
J. 139, 909 (1964); H. Y. Chiu, Ann. Phys. 26, 364 (1964); F. C. 
Michel, Astrophys. J. 138, 1097 (1963); S. A. Colgate and R. H. 
White, Bull. Am. Phys. Soc. 8, 306 (1963). 

3 J. A. Wheeler, in Gravitation and Relativity, edited by H. Y. 
Chiu and W. F. Hoffmann (W. A. Benjamin Company, Inc., 
1964), Chap. 10. 

where n* is the four-velocity field of the fluid, e is the 
internal energy of the fluid per unit proper rest volume, 
and p is the pressure. Because this tensor is diagonal in 
the local rest frame of the fluid, it cannot describe the 
energy flow associated with heat conduction or radia
tion. Using Eq. (1.1) in the statement ufiT

llv;V=0 of 
local energy conservation shows that the entropy of 
each particle in the fluid is constant, w^,M=0. We sum
marize here the equations in the isentropic case, where 
one further assumes s? / i=0, so that the specific entropy 
is constant throughout the volume of the fluid. 

The metric is chosen to have the diagonal form 

where 
d$2 = - e2Ut2+eHr2+R2d&2, (1.2) 

dQ2 = d62+sin2dd<p2. (1.3) 

Here <j>, A, and R are each functions of r and t to be 
determined by the Einstein field equations. We shall 
work in a system of coordinates moving at each point 
with the material located at that point (comoving or 
Lagrangian coordinates). The components of the four-
velocity are thus 

tt*=0; t = r, (1.4) 

Then the hydrodynamic equations T^v
]v=0 give the 

result 
e*=(-gmy'1=l/h, (1.5) 

where h=u+pv= (eJrp)/n is the specific enthalpy or 
heat function for a unit amount of fluid (the amount 
containing a mole of baryons). [The specific internal 
energy u and the specific volume v are related to the 
matter density or baryon number density n(r,t) by 
u=ev and v==l/n. We choose units of n(r,t) so that 
e—^n and h —> 1 as p —» 0.] In order to compute h, it is 
sufficient to specify the adiabatic equation of state 

e(n), (1.6) 
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for then the pressure equation p(n) can be deduced via 
the thermodynamic relation 

> = » ( — ) - € , 
\dn/ s 

and from h— (e+p)/n one finds that 

'<9e\ 
h 

\dn/s 

(1.7) 

(1.8) 

The remaining field equations for this problem take 
a simple form if one defines a quantity U which gives 
the relative velocity Udd of adjacent fluid particles on 
the same sphere of constant r, 

U=DtR^e~*R. (1.9) 

Here Dt is the comoving proper-time derivative 

d /d 
Dt=W^ • * — = e ~ n — 

dx* \dtJr 
(1.10) 

One also uses in place of X(r,/) a function m(r,t) defined 
by 

r 2 w ( r , 0 n ~ V ^ \ 2 

The full set of field equations are then the three first-
order dynamical equations 

DtR=U ? 

Dtm=-4wR2pU, 

D,U=-
e+p J\dR/t 

(M+4TRSP) 

(1.12-12) 

(1.12-m) 

(\ 12-m 
R? 

two equations free from time derivatives, namely, Eq. 
(1.5) and the equation 

/dm 

\dR ) . -
47ri?2e (1.13) 

and the equation of continuity (nu^-^—O. The con
tinuity equation can be written in a form 

4:TrR2n dR /dA\ 

( l+ /7 2 -2mi?- 1 ) 1 / 2 dr \ dr Jt 

(1.14) 

appropriate to our comoving coordinates, where the 
amount of matter dA in any spherical shell defined by a 
fixed coordinate range dr is independent of time. 

Solutions to the above system of equations can be 
obtained by specifying arbitrary initial values for R (rfl), 

m(r,0), and U(rfi). Equation (1.13) then defines e(r,0) 
which gives the values of p, n, and h through an equa
tion of state and thus allows the time derivatives of R, 
m, and U to be obtained from Eqs. (1.12). One thus 
obtains a solution for all times without invoking Eq. 
(1.14); but this equation merely defines dA/dr initially, 
and it is possible to show that the time derivative of the 
left member of Eq. (1.14) vanishes as a consequence 
of Eqs. (1.12), (1.13), (1.5), and (1.7). Thus, Eq. (1.14) 
is a first integral of this system of equations. 

The above system of equations is to be solved subject 
to the boundary condition that 

p = 0 at r=rif= constant, (1.15) 

where rs defines the outer boundary of the distribution 
of matter. I t is then evident from Eq. (1.12-m) that 

m(ra,t)=M (1.16) 

is a constant and, in fact, the interior metric (1.2) 
can be joined smoothly at the surface rs to an exterior 
Schwarzschild metric whose mass M is given by Eq. 
(1.16). 

I t is also necessary to require that at r—Q the func
tions R, m, and U all vanish. 

II. THERMODYNAMIC PRELIMINARIES 

Local properties of a fluid such as pressure, tempera
ture, specific entropy, internal energy density, etc., 
which are scalars in nonrelativistic physics can all be 
defined in special and general relativity so that they are 
again scalars. For, to be scalars, they need merely 
have a well-defined value at any event, independent of 
every arbitrary choice of a coordinate system. One 
achieves this by defining these quantities to have (in any 
coordinate system) the values measured by an observer 
who is at rest relative to the chosen small piece of fluid 
at the time in question. 

The basic law of thermodynamics4 

du=Tds—pdv (2.1) 

applies to a fixed amount of matter which, for con
venience, we take to be a unit amount. The fact that 
the amount of matter does not change can be expressed 
by introducing the particle number density n— (1/v) 
and requiring it to satisfy a continuity equation: 

(w^) ;M=0. (2.2) 

This law of conservation of matter in hydrodynamics 
can be derived from the microscopic law of conservation 
of baryons. 

4 The discussion in Sees. II and III is based on that of L. 
Landau and E. Lifshitz, Fluid Mechanics (Addison-Wesley 
Publishing Company, Inc.? Reading, Massachusetts, 1959), Chap. 
XV, especially in its emphasis on the continuity equation (2.2). 
For more complete discussions of the subject see: (i) A. Lich-
nerowicz, Theories Relativistes de La Gravitation et de L9Electro-
magnetisme (Masson et Cie, Paris, 1955); (ii) J. L. Synge, Rela-
tivistic Hydrodynamics, Proc. London Math. Soc. 43, 376 (1937). 
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When Eq. (2.1) is rewritten in terms of the energy 
density e=u/v and particle number density n, it reads 

de=nTds+ (e+p)n~1dn (2.3) 

and gives Eq. (1.7) in the case ds = 0. Thus, e= e(s,n) is 
a convenient fundamental thermodynamic relationship 
for describing a fluid; it immediately gives the pressure 
equation p(s,n) via Eq. (1.7). By differentiating the 
definition of specific enthalpy, h — u+pv=(e+p)/n, 
and employing Eq. (2.1) or (2.3), one obtains a relation 

dh dp Tds 
- = + (2.4) 
h (e+p) h 

which will be useful later. 

III. HYDRODYNAMICS REVIEW 

The equations of motion of a fluid described by the 
stress-energy tensor4 T*v of Eq. (1.1) and an equation 
of state e=e(s,n) are T^^—O. One of these four equa
tions, namely, u^T^^^O, reduces as a consequence of 
Eqs. (2.2) and (2.3) to the heat transfer equation for 
an ideal fluid, which is the condition of adiabatic flow 

*>*,„=0. (3.1) 

The remaining equations can be reduced to the form of 
relativistic Euler equations: 

P.* 
u^vu

v= — ( g ^ + w w ) . (3.2) 
e+p 

In the special case of isentropic flow, where one 
assumes the specific entropy s to be constant throughout 
the fluid stlx=0, the Euler equation can be rewritten as 

u*.vu
v= — (gv+uW)(hih);V (3.3) 

by use of Eq. (2.4). 
I t is evident that in the isentropic case we may 

consider e, p, and h as functions of the particle number 
density n alone, i.e., e=e(n), p = p(n), h = h(n). 

IV. COORDINATES AND METRIC 

The metric • (1.2) must satisfy certain conditions at 
the origin r = 0 to assure regularity there. The first is 

JR(0,/) = 0. (4.1) 

Next, in order for the usual Lorentz-Minkowski 
geometry to be valid in an infinitesimal neighborhood 
of the origin, we must require that the circumference 
2TR of an infinitesimal sphere about the origin be just 
2ir times its proper radius e^^dr, or 

e*=(dR/dr)* at r = 0. (4.2) 

Other conditions must hold at the interface between 
the region occupied by matter (defined by a certain 
constant coordinate value r=r? for the interior solution) 

and the surrounding empty space in order that the 
interior metric (1.2) can be joined smoothly to the 
exterior Schwarzschild metric 

dR2 

ds2=-(l- 2MR~l)dt2-\ +R2dQ2. (4.3) 
\-2MR~1 

These conditions will serve to relate the exterior coordi
nates R and t to the interior t coordinate and interior 
metric component g6e—R2(r,t)> Assume that in the 
exterior R,t coordinates the interface is described by 
an equation 

R=R8(t). (4.4) 

The metric on the interface is obtained by inserting 
this in Eq. (4.3), or alternatively by setting r=rs=const 
in Eq. (1.2). By equating these two expressions, 

/ 2M\ Rs
2dt2 

(^2)surf- - ( 1 W + +Rs
2dQ2 

\ RSJ \-2MRs~1 

= - (e2*)sdt2+R2(rs,t)dtt2, (4.5) 

we find an equation for the interface in the exterior 
coordinates. I t reads 

R=R&(t)=R(rs,t), (4.6) 

provided that we insist that the interior and exterior 
time coordinates agree on the surface. This boundary 
condition on t then leads to one on e^, namely, 

(«*)r-r. = [1 -2J l f22 . - 1 ] [ l+ Us
2-2MRs-q-V2, (4.7) 

where we have defined 

• / dR\ 
U.= (<r+)Jla=[<r+—) . (4.8) 

The function Us(t) is the rate of change of Rs with 
respect to the proper time of a comoving observer. The 
conditions derived from the continuity of the deriva
tives of the metric can best be considered later. 

V. EULER EQUATION 

In the comoving coordinates defined by Eq. (1.4), 
one obtains from Eq. (3.2) only one nontrivial Euler 
equation, which reads: 

30 /d r= - [ l / ( e + f ) ] t y / 3 r . (5.1) 

In the isentropic case we may use Eq. (2.4) to integrate 
Eq. (5.1). With the boundary condition (4.7), one finds 

1 l - [ 2 i f / U . ( 0 ] 
e4> = _ _ (5.2) 

A(r,0 {l+U2(t)~Z2M/Rs(t)2V12 

when h is normalized so that h= 1 at the surface r=r8. 
However, the coordinate conditions (1.4) and the 
diagonal form of the metric (1.2) are preserved by 

file:///-2MR~1
file:///-2MRs~1
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transformations of the interior time coordinate t of the 
form t—> f(t), so it is possible to change e^ by a factor 
which is an arbitrary function of time. Consequently, 
the solution (1.5) is also acceptable. Use of Eq. (1.5) 
synchronizes the interior time coordinate with the 
proper time of a comoving observer at the interface 
r=r8, and prevents the interior time coordinate from 
inheriting the singularities of the exterior time coordi
nate when the surface falls through the Schwarzschild 
"singularity" (R8(t)-2M)-+0. 

When different layers in the body are allowed to have 
different adiabatic equations of state e(n), it is not 
possible to integrate Eq. (5.1) in terms of the specific 
enthalpy, but an integrated form such as 

rRs i dp 
<!>=+ dR (5.3) 

JR e+pdR 

can of course be written. The boundary condition in
corporated into Eq. (5.3) makes e*= l at the surface 
R = RS as in Eq. (1.5). The analogous generalization of 
Eq. (5.2) is evident. 

The Einstein equations corresponding to the metric 
(1.2) can be found in Landau and Lifshitz.5 Since one 
knows6 that the To0 and 7\-° equations will contain no 
second time derivatives, one may hope to find some
thing simple in them for a starting point. In the present 
case, the Tr° equation is the simplest. I t reads 

<r*\=2U'/R', (6.1) 

where we use dots and primes to indicate the partial 
derivatives with respect to t and r, respectively, and 
define U by Eqs. (1.6) and (1.7). We may use the 
differential operators 

d/dR=(l/R')(d/dr)t (6.2) 
and 

Dt=e-*(d/dt)r (6.3) 

to rewrite the initial value equation (6.1) in the form 

Dt\=2(dU/dR). (6.4) 

This equation may then be used to eliminate X from all 
the other Einstein equations. When it is used in the To0 

equation, one finds 

8TT€^2= 1 + U2+R(dU2/dR) 

- Z2RR"+R'22e-* - RR' (<rx)'. (6.5) 

Since this equation is of first order, and even linear, 
in e~x we try to solve it for this function. The work 

5 L. Landau and E. Lifshitz, The Classical Theory of Fields 
(Addison-Wesley Publishing Company, Inc., Reading, Massa
chusetts, 1951), Sec. 11-7, Problem 5. 

6 Y. Bruhat, in Gravitation: An Introduction to Current Re
search, edited by L. Witten (John Wiley & Sons, Inc., New York, 
1962), Eq. (4-1.8). 

of Oppenheimer and Volkoff7 in the static case, 
where e~ x =l —2mr-1, indicates something of the form 
the solution might take. But the boundary condition 
(4.2) suggests some modifications of this. The form 
e~x = R/~2~2mR~1 satisfies these boundary conditions if 
(m/R) —> 0 as r —> 0, but it is inappropriate for di
mensional reasons: The Lagrangian coordinate r is 
arbitrary at time t=Q, and therefore can be assigned 
a dimension independent of all other quantities in the 
problem, while m/R is dimensionless. This leads us to 
try the form erx=R'-2(l+f) which simplifies Eq. (6.5) 
so that it reads 

8<7reR2 = d(RU2-Rf)/dR (6.6) 

and thus yields the solution /== U2—2mR~1 as given in 
Eqs. (1.11) and (1.13). To interpret Eq. (1.13) it is 
best to rewrite the integral 

m(r,t)= / 4<jrR2edR (6.7) 
Jo 

dW^^RWHr (6.8) 
to obtain 

r / 2m\^2 

m= eli + U2 J dW. (6.9) 

This last form reminds us that when considered as an 
energy, m includes contributions from the kinetic energy 
and the gravitational potential energy. 

I t is now possible to rewrite the constraint (6.4) in 
an interesting form by substituting for X from Eq. 
(1.11). The computation involves interchanging the 
operators Dt and d/dr to write 

dU d<j> 
DtlnR'zz—+U—. (6.10) 

dR dR 

Using this identity and Eq. (5.1) gives 

/ 2m\^2 1 dp 
Dt\n[l+U* I =-U . (6.11) 

\ Rt e+p dR 
This equation is a useful first integral in the cases con
sidered by Oppenheimer and Snyder1 and by Bondi8 

where p = 0. For then, since e^= 1 by Eq. (1.5), it reads 
\R2— (m/R)=E== const and will give Newtonian free 
fall for R(t) when we later discover that m(f) is constant 
with this special p = 0 equation of state. 

7 J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 
(1939). 

8 H. Bondi, Monthly Notices of the Royal Astronomical Society 
107,410 (1947). 

VI. INITIAL VALUE EQUATIONS in terms of the element of proper volume 
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VII. EQUATION OF MOTION 

It is known9 that the Einstein equations 

Rij^MTij-hijT^) (7.1) 

for i, j=l, 2, 3 contain as leading terms just dKij/dt, 
where K^ is the second fundamental form of the 
t—const surface. Equivalently, the only second time 
derivative that appears in Eq. (7.1) is d2gij/dt2. Thus, 
the Rrr equation will contain just X and will be an 
identity since we have eliminated X from our scheme 
by solving Eq. (6.5). The Ree and R^ equations will be 
equivalent (by symmetry) and each will contain just 
R. They read 

G 

—4TR2(e-p) = e-*d(RRe-<f>)/dt+y-2*RR\ 

+ 1 - e~^2d (RR'e~V2)/dr~ e^RRf<j>f 

= Ree=(sm2d)-1R^. (7.2) 
In this equation we introduce the operator Dt of Eq. 
(1.10) and, for some intermediate computations, the 
operator 

d / 2m\^2 d 
-X/2„== M + t/2 \ (7.3) 

dr \ RJ dR 

D 

Then X is eliminated using Eq. (6.4), R is replaced by 
U via Eq. (1.9), and 0' with p' via Eq. (5.1). This result 
is Eq. (1.12-Z7) which includes the well-known Oppen-
heimer-Volkov7 equation of hydrostatic equilibrium in 
the limiting case Z7=0. 

Using the main equation (1.12-Z7) we can carry out 
some of the differentiations in Eq. (6.11) to reduce it 
to the form (1.12-m). It is this form which shows that 
m=0 in the case of a p=0 equation of state. 

VIII. EQUATION OF CONTINUITY 

The continuity equation (2.2) implies quite generally 
that the integral 

• / 

A= \nu\-g)li*&x (8.1) 

taken over a /=const surface is independent of t. Its 
value A is analogous to the mass number of a nucleus 
and represents the total amount of matter, or total 
number of baryons, in the system. In comoving coordi
nates satisfying Eq. (1.4) the corresponding integral 
over any fixed domain of the spatial coordinates 
xi(i=l9 2, 3) is time-independent, since Eq. (2.2) then 
reads 

d(nu°V~-g)/dt=0. (8.2) 

For our problem we can insert expressions for u° and 
\/— g here to obtain the statement that 

^R2nRf/[l+U2-2mR-1Ji2=A,(r) (8.3) 

is time-independent. 
9 Reference 6, Eq. (4-1.9). 

Because we have rather thoroughly reshuffled the 
Einstein equations of the metric (1.2) in obtaining a 
system of equations for independent field variables R, m, 
and U, it may be of interest to prove directly that for 
each r, Eq. (8.3) gives a constant of motion for the 
system of equations (5.1), (1.12), and (1.13) supple
mented by an adiabatic equation of state e(n) for 
each r. The computation begins by forming the loga
rithmic derivative of Eq. (8.3) 

DtA' Dtn 2DtR DtR' / 
= + + XDU 1+U2 

A' n R R! \ 

2m\ 

RJ 
(8.4) 

In the second term of Eq. (8.4) we can write by (1.12-JR) 
that DtR=U; the third term has been rewritten in 
Eq. (6.10); the derivatives in the last term can all be 
evaluated from Eqs. (1.12) and give Eq. (6.11) which, 
by (5.1), reads 

/ 2m\l>2 d<i> 
DtMl+U2 ] =U—. 

\ RJ dR 

We thus obtain the reduced form 

DtA' Dtn 1 d 
= + (&U). 

A' n R2 dR 

(8.5) 

(8.6) 

Because of the adiabatic condition Dts=0, changes in 
density are related according to Eq. (2.3) by 

Dtn Dte 

e+p 
(8.7) 

In the reduced system of equations for R, m, and U, 
the density e is given by Eq. (1.13) which we differ
entiate to obtain Dte: 

dm 
Dt—= S7rRUe+^R2Dte. 

dR 
(8.8) 

To evaluate the left-hand side of this equation we need 
the commutator 

r d-\ d<t>/ d \ dU d 
Dt,— \ = —(Dt-U—) (8.9) 

L dRJ dR\ dRj dRdR 

in which d<t>/dR can be eliminated using Eq. (5.1). We 
find then with the use of Eqs. (1.12-m) and (1.13) that 

dm dU 
Dt—= -SwRpU~4wR2(e+p)—, (8.10) 

dR dR 

which allows us to rewrite Eq. (8.8) in the form 

1 d 
Dte=~(e+p) (R2U). 

R2dR 
(8.11) 
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Combining this with Eqs. (8.7) and (8.6) then gives 

DtA' = Q (8.12) 
as we wished to show. 

IX. BOUNDARY CONDITIONS 

The condition, previously discussed, that the metric 
or first fundamental form of the boundary surface 
should be the same whether obtained from the interior 
or exterior metric, guarantees that for some coordinate 
system the metric components gM„ will be continuous 
across the surface. In order to guarantee that coordi
nates can be introduced for which the first derivatives 
of the metric,gM„,«, are continuous,it is sufficient that the 
second fundamental form be the same whether the 
boundary surface is considered imbedded in the in
terior or the exterior space-time.10 For any hypersurface 
s with unit normal vector n1*, the second fundamental 
form $ is defined as11 

<£>=(-%; d&dtf) s, (9.1) 

where the subscript s means that one of the coordinate 
differentials is to be eliminated using the equation of 
the surface. For example, one sets (dR—Rsdt)s = 0 in the 
exterior coordinates of our problem. For comparison 
purposes, we write 

Q = Kt>t>(e+dt)*+Kwl(RJO)*+ (Rs sin0<M2] (9.2) 

and compute from the interior solution that for the 
10 D. L. Beckedorff, thesis, Princeton University, Mathematics 

Department, 1961 (unpublished); and C. W. Misner and D. L. 
Beckedorff (unpublished). 

11 E. Cartan, Lecons sur la Geometrie des Espaces de Riemann 
(Gauthier-Villars, Paris, 1951), Sec. 207. 

hypersurface r=r8 one has 

Kw = -Rs~
1ll+ Us2- (2ms/Rs)Ji*, (9.3) 

while the exterior metric gives, for the hypersurface 
R=R.(t), 

Ke>e>= -Rs-'ll+U*- (2M/R&)J*. (9.4) 

Matching these components of <i> therefore gives M=ms 

which is Eq. (1.16). Since M is a constant this equation 
can be differentiated with respect to t with r=rs to 
give ms = 0 which implies, through Eq. (1.12-w), that 
psUs = 0. The correct boundary condition is more 
specifically 

P>=P(r.,t)=0, (9.5) 

as can be seen by comparing the interior and exterior 
components Kt>v and using the field equation (1.12-Z7). 
The interior computation gives 

/ 2M\li* 1 dp 
Kt,t-=-[l+U* ) , (9.6) 

\ R 1 e+p dR 

while the exterior gives 

Kt,t>
+= +f 1+ £/2 J —+DtU . (9.7) 

The difference of these two, using Eq. (1.12-U) and 
ms~M, is 

Kvv+-KVt-= -[1+ Us2- (2M/Rs)2-1,2^psR8. (9.8) 
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